Elucidation of a novel bioactivation pathway of a 3,4-unsubstituted isoxazole in human liver microsomes: formation of a glutathione adduct of a cyanoacrolein derivative after isoxazole ring opening.
نویسندگان
چکیده
Studies on the biotransformation of isoxazole rings have shown that molecules containing a C3-substituted isoxazole or a 1,2-benzisoxazole can undergo a two-electron reductive ring cleavage to form an imine. In the absence of a C3 substituent, the isoxazole ring opens via deprotonation of the C3 proton followed by N-O bond cleavage to yield an α-cyanoenol analog. We report the identification of a novel bioactivation pathway of a 3,4-unsubstituted isoxazole in human liver microsomes. After the enzyme-catalyzed cleavage of the 3,4-unsubstituted isoxazole ring of N-((2-isopropyl-7-methyl-1-oxoisoindolin-5-yl)methyl)isoxazole-5-carboxamide (P) in human liver microsomes, the formed α-cyanoenol (M1) condenses with formaldehyde to generate an α,β-unsaturated Michael acceptor intermediate (a cyanoacrolein derivative, VII), which further reacts with the cysteinyl thiol of glutathione to yield a GSH adduct of a cyanoacrolein derivative (M3). The same adduct also is formed when M1, generated in 0.1 N NaOH aqueous solution, reacts with formaldehyde and GSH. (13)C-labeled methanol was used to confirm that methanol from the drug stock solution was oxidized by liver microsomal enzymes to formaldehyde and the carbon atom from methanol was finally incorporated in the corresponding GSH adduct. The formation of isoxazole ring-opened products (M1 and M2) in human liver microsomes is NADPH-dependent. M1 and M2 were found in human liver microsomes preincubated with 1-aminobenzotriazole (1 mM) and NADPH (5 mM) at ∼ 10% of the levels found in the samples in the absence of 1-aminobenzotriazole, suggesting that this biotransformation pathway is primarily catalyzed by cytochrome P450. The formation of M3 also was inhibited by 1-aminobenzotriazole at a similar level.
منابع مشابه
Elucidation of a Novel Bioactivation Pathway of a 3,4-Unsubstituted Isoxazole in Human Liver Microsomes: Formation of a Glutathione Adduct of a Cyanoacrolein Derivative Following Isoxazole Ring Opening
ed at higher pH and form the enol form M1 (Scheme 6). The mass spectra of the molecular ion of M3 at m/z 633 suggest formation of a GSH-adduct. The formation of the second generation product ions at m/z 202 and 160 from the ion at m/z 326 suggests the 2-isopropyl-5,7-dimethylisoindolin-1-one moiety is intact. Studies with C-labeled methanol resulted in a 1 Da shift of the [M+H] of M3 at 633 and...
متن کاملMetabolic activation and DNA adduct formation of Benzo(a) pyrene by adult and newborn rat skin and liver microsomes
Benzo(a) pyrene is a carcinigen polycyclic aromatic hydrocarbon which diffuses into the environment from combustion of organic meterials.based on various epidemiological evidences it is related to lung,skin and liver cancer.mutagenicity,and immunosuppressivety are among important biological effects of Benzo(a) pyrene.after absorbtion and distribution in the body,it undergoes epoxidation by cyto...
متن کاملNovel bioactivation mechanism of reactive metabolite formation from phenyl methyl-isoxazoles.
Recently, we described a series of phenyl methyl-isoxazole derivatives as novel, potent, and selective inhibitors of the voltage-gated sodium channel type 1.7 (Bioorg Med Chem Lett 21:3871-3876, 2011). The lead compound, 2-chloro-6-fluorobenzyl [3-(2,6-dichlorophenyl)-5-methylisoxazol-4-yl]carbamate, showed unprecedented GSH and cysteine reactivity associated with NADPH-dependent metabolism in ...
متن کاملMICROSOME-MEDIATED BENZO[A]PYRENE-DNA BINDING AND INHIBITION BY CYTOSOLIC FRACTIONS FROM LIVER AND SKIN OF ADULT AND WEANLING RATS
Biotransformation of benzo[a]pyrene (BaP) in the presence of microsomal fractions derived from liver and epiderm of adult and weanling rats was examined. The aim of this study was to evaluate the effect of age on the capacity of two organs in transformation of BaP. Subcellular fractions were prepared from skin and liver by ultracentrifugation and were used as the source of BaP metabolizing enzy...
متن کاملIdentification of the thiophene ring of methapyrilene as a novel bioactivation-dependent hepatic toxicophore.
Methapyrilene (MP), a 2-thiophene H(1)-receptor antagonist, is a model toxicant in the genomic and proteomic analyses of hepatotoxicity. In rats, it causes an unusual periportal necrosis that is hypothetically attributed to chemically reactive and cytotoxic metabolites. We have characterized the bioactivation of MP by hepatic microsomes and primary rat hepatocytes, and we established a possible...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 39 2 شماره
صفحات -
تاریخ انتشار 2011